Control Hierarchy

the first two avoid the confound

- 1. "hold it constant"
- 2. "equalize on average" (e.g., counter-balance)

the second two measure the effect of the confound

- 3. "measure and remove" (i.e., add covariates)
- 4. run a "control experiment" (testing the confound)

the last one doesn't avoid or measure the confound

5. use converging operations (e.g., a hybrid design)

Pre-test/Post-test w/ One Group

- measure the subjects before and after treatment and test if they get better
- problem(s)

Post-test-only w/Two Groups

- one group gets the treatment, the other doesn't and test if the treatment group ends up better
- problem(s)

Pre-test/Post-test w/Two-Groups

Treatment Group	before – after	= change
		= effect of therapy plus effect of time
Control (no-treatment) Group	before – after	= change = effect of time (only)

if the change score for the treatment group is larger than the change score for the control group, then the therapy was effective (i.e., better than only time)

Pre-test/Post-test w/ Two-Groups

Analysis Option #1

"change score" logic + "level-4" confound control compare the change scores between the groups (i.e., treatment vs control) using an independent-samples *t*-test

a (significant) advantage for the treatment group is evidence that the therapy is better-than-nothing

any problems with this?

Pre-test/Post-test w/ Two-Groups

Analysis Option #2

"outcome" logic + "level-3" confound control compare the post scores between the groups (i.e., treatment vs control) but include the pre-scores as a covariate

a (significant) advantage for the treatment group is evidence that the therapy is better-than-nothing

any problems with this?

Pre-test/Post-test w/ Two-Groups

Analysis Option #3

"change-score" logic + "level-3" & "level-4" confound control

compare the change scores between the groups (i.e., treatment vs control) but also include the prescores as a covariate

a (significant) advantage for the treatment group is evidence that the therapy is better-than-nothing

any problems with this?